OpAmps

- Review
- Gain Stages
- NVA w/ OpAmps
- Current Source
- Examples
Review of OpAmps

Ideal OpAmp

Don't worry for analysis now, just when building circuits in the lab (or in real life).

- Negative Feedback Assumption
- Ideal OpAmp
 - $I^+ = 0, I^- = 0$
 - $V^+ = V^-$ (when OpAmp in negative feedback)

Golden Rules
 - A_v (open-loop gain) $\to \infty$, $v_{out} = A_v (V^+ - V^-)$

Aside:

Negative Feedback

Positive Feedback

$v_{out} = A_v (V^+ - V^-)$
Non-Inverting Amplifier

\[V_{out} = \left(1 + \frac{R_2}{R_1}\right)V_{in} \]

By choosing \(R_1 \), \(R_2 \) values, we can multiply an input voltage by \(A > 1 \)

\[R_2 = \frac{3k}{R_1} = \frac{1k}{\Rightarrow A = 4} \]

Note: See Module 2, Lecture 9 for derivation.
Inverting Amplifier

\[I_1 = \frac{V_{in} - 0}{R_1} = \frac{0 - V_{out}}{R_2} \]

\[\frac{V_{in}}{R_1} = -\frac{V_{out}}{R_2} \Rightarrow V_{out} = -\frac{R_2}{R_1} \cdot V_{in} \]

Solution Method #1

\[A = [0 \ldots -\infty] \]

\[[0, 0.5, 1, \ldots, 1000] \]

Solution Method #2

\[\frac{V_{out} - V_{in}}{R_1} = I_1 \]

\[V_{in} = I_1 R_1 \Rightarrow I_1 = \frac{V_{in}}{R_1} \]

\[V_{out} = -I_1 R_2 \Rightarrow I_1 = -\frac{V_{out}}{R_2} \]

\[-\frac{V_{out}}{R_2} = \frac{V_{in}}{R_1} \Rightarrow V_{out} = -\frac{R_2}{R_1} \cdot V_{in} \]
Solution
Method #3
(NVA w/OPA)

\[\text{KCL:} \]
\[\frac{V^- - V_{\text{in}}}{R_1} + \frac{V^- - V_{\text{out}}}{R_2} = 0 \]

\[\sum I'_s \text{ leaving} = \sum I'_s \text{ entering} \]

\[V^- = V^+ (= 0) \]

\[-\frac{V_{\text{in}}}{R_1} + -\frac{V_{\text{out}}}{R_2} = 0 \]

\[V_{\text{out}} = -\frac{V_{\text{in}}}{R_1} \]

\[V_{\text{out}} = -\frac{R_2}{R_1} V_{\text{in}} \]
NVA w/ OPamps

Goal: Find all voltages (and currents) in a circuit that contains op amps.

Procedure:

1. Verify **negative feedback**
2. Verify **ideal opamp**

Add the following rules to NVA:

- Write KCL at both inputs (V^+, V^-) (unless the voltage is set by a source)
- Do **not** write an eqn for the output node of opamp (V_{out})
- Add $V^+ = V^-$ to eqns to solve circuit.

Apply NVA Example

![Circuit Diagram]

\[V_{out} = f(V_A, V_B, R_1, R_2) \]
Aside: Why do we need a buffer?
Current Source

\[I_R = \frac{V_S}{R} \]

\[R_{\text{LOAD}} \neq R \]

Why is \(V^- = 0 \)?
Because \(V^+ = 0 \) and Golden Rule
\(V^- = V^+ \)

\[I_S = \frac{V_S - 0}{R} = \frac{V_S}{R} \]

Why does \(I_L = I_S \)?
@ Node \(V^- \): \(\phi \)
\[I_S = I_L + \sum \text{I/O} \]
Golden Rule
\[\therefore I_S = I_L \]

\[I_L = ? \]
\[I^+ = ? \]
\[V^+ = V^- \]
Touch Sensor

\[
\text{Graph of: } V_{\text{touch}}(t) = \frac{Q}{C_{\text{touch}}} = \frac{I_s}{C_{\text{touch}}} \cdot t
\]

In Lab

\[
V_{\text{out}} \text{ (w/ finger)} \quad V_{\text{out}} \text{ (w/o finger)} \quad V_{\text{ref}} \text{ (threshold for touch detection)}
\]

C\text{touch} changes when you touch screen.