Lecture 4B (07/19/22)

Announcements

• Quest regrades due tonight!

• Midterm Logistics Post is Up (7/29)
Agenda

- A note on the path of least resistance
- Capacitors
- Capacitive Touchscreens
- Charge Sharing (life time)
Path of least resistance

- Current flows down the path of least resistance (WRONG)

- Current flows down all paths, but in an amount inversely proportional to the resistance of the path (correct)
Capacitors + Capacitance

Capacitance:
\[C = \frac{\varepsilon A}{d} \]
- \(C \) is capacitance in Farads (F)
- \(\varepsilon \) is permittivity of the dielectric
- \(A \) is the cross-sectional area
- \(d \) is the distance across

Resistance:
\[R = \frac{d}{A} \]
- \(R \) is resistance
- \(d \) is distance across
- \(A \) is area

Dielectric (insulator):
- Represents the material between the electrodes
Capacitors: What's Happening

A electrons flow in the opposite direction of the labeled current
Capacitors: What's happening
Capacitors: Charging & Discharging

Charging (w/voltage)

\[\frac{1}{t} \quad V = v_t - v_i \]
IV Relationship

\[\text{charge on the plate (Coulombs)} \]

\[Q = CV \]

\[\frac{d}{dt} (Q = CV) \]

\[I = C \frac{dV}{dt} \]

"element behavior"

Voltage drop

Capacitance
Example

\[V_s = u_1 - 0 \]

\[i_c = C \frac{dV_c}{dt} = C \frac{d}{dt}(u_1 - 0) \]

\[i_c = C \frac{d}{dt} V_s \]

\[i_c = OA \]
Example

\[I = C \frac{du}{dt} \]
\[i_c = C \left(\frac{du}{dt} (0 - u_1) \right) \]
\[(u_1 - 0) = i_c R \]
\[i_c = 0 = \frac{du}{dt} \]
\[u_{ir} = 0 \Rightarrow u_1 = 0 \]

\[i_c = 0 \] \text{steady state}
Example

\[i_c = I_s \]
\[i_c = C \frac{d}{dt} u_i \]
\[I_s = C \frac{d}{dt} u_i \]
\[u_i(+) = u_i(0) = \frac{I_s}{C} t \]
\[u_i(+) = \frac{I_s}{C} t + u_i(0) \]
Example

Signal: independent source whose value is a function of time

\[V_i(t+) = \frac{I_s}{C} t + V_i(0) \]
Capacitor Equivalence

Series
\[C_{eq} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} \]

Parallel
\[C_{eq} = C_1 + C_2 \]

\[R = \frac{R_1 R_2}{R_1 + R_2} \]

\[C = \frac{\varepsilon A}{d} \]
Example

\[C_{eq} = \left(\frac{C_1}{C_2} \parallel \left(C_3 \parallel (C_4 + C_5) \right) \right) \]
Capacitive Touchscreens

- ~90% of touchscreens today
- More intricate hardware, but more control
Capacitive Touchscreens: No Touch
Capacitive Touchscreen: No Touch
Capacitive Touchscreens: With Touch

\[C_2 \quad \frac{1}{C_0} \quad \frac{1}{C_1} \]

finger
Capacitive Touchscreens: With Touch

\[C_{ef} = (C_1 + C_2) \times C_0 \]
Capacitive Touchscreen w vs wo touch

\[V(t) = \frac{I_0}{C} t + V(0) \]

Graph showing the comparison between with and without touch, with the equation for voltage over time.
Charge Sharing

- Setup:
 - Circuit w/ voltage sources, capacitors and switches

![Circuit Diagram]

- V_s
- C_1
- C_2
- ϕ_1
- ϕ_2