1. Exploring Column Spaces and Null Spaces

- The **column space** is the *span* of the column vectors of the matrix.
- The **null space** is the set of input vectors that output the zero vector.

For the following matrices, answer the following questions:

i. What is the column space of \(A \)? What is its dimension?

ii. What is the null space of \(A \)? What is its dimension?

iii. Are the column spaces of the row reduced matrix \(A \) and the original matrix \(A \) the same?

iv. Do the columns of \(A \) form a basis for \(\mathbb{R}^2 \)? Why or why not?

(a) \[
\begin{bmatrix}
1 & 0 \\
0 & 0 \\
\end{bmatrix}
\]

Answer:

Column space: span \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \)

Null space: span \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \)

The matrix is already row reduced. The column spaces of the row reduced matrix and the original matrix are the same.

Not a basis for \(\mathbb{R}^2 \).

(b) \[
\begin{bmatrix}
0 & 1 \\
0 & 1 \\
\end{bmatrix}
\]

Answer:

Column space: span \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \)

Null space: span \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \)

The two column spaces are not the same.

Not a basis for \(\mathbb{R}^2 \).

(c) \[
\begin{bmatrix}
1 & 2 \\
-1 & 1 \\
\end{bmatrix}
\]

Answer:

Column space: \(\mathbb{R}^2 \)

Null space: span \(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \)

The two column spaces are the same as the column span \(\mathbb{R}^2 \).

This is a basis for \(\mathbb{R}^2 \).
(d) \[
\begin{bmatrix}
-2 & 4 \\
3 & -6
\end{bmatrix}
\]

Answer:

Column space: \(\text{span} \left\{ \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} \right\} \)

Null space: \(\text{span} \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\} \)

The two column spaces are not the same. Not a basis for \(\mathbb{R}^2 \).

(e) \[
\begin{bmatrix}
1 & -1 & -2 & -4 \\
1 & 1 & 3 & -3
\end{bmatrix}
\]

Answer:

i. The columnspace of the columns is \(\mathbb{R}^2 \). The columns of \(A \) do not form a basis for \(\mathbb{R}^2 \). This is because the columns of \(A \) are linearly dependent.

ii. The following algorithm can be used to solve for the null space of a matrix. The procedure is essentially solving the matrix-vector equation \(Ax = 0 \) by performing Gaussian elimination on \(A \).

We start by performing Gaussian elimination on matrix \(A \) to get the matrix into upper-triangular form.

\[
\begin{bmatrix}
1 & -1 & -2 & -4 \\
1 & 1 & 3 & -3
\end{bmatrix}
\sim
\begin{bmatrix}
1 & -1 & -2 & -4 \\
0 & 2 & 5 & 1
\end{bmatrix}
\sim
\begin{bmatrix}
1 & -1 & -2 & -4 \\
0 & 1 & 5/2 & 1/2
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 1/2 & -7/2 \\
0 & 1 & 5/2 & 1/2
\end{bmatrix}
\]

reduced row echelon form

\[x_1 + \frac{1}{2}x_3 - \frac{7}{2}x_4 = 0\]
\[x_2 + \frac{5}{2}x_3 + \frac{1}{2}x_4 = 0\]

\(x_3\) is free and \(x_4\) is free

Now let \(x_3 = s \) and \(x_4 = t \). Then we have:

\[x_1 + \frac{1}{2}s - \frac{7}{2}t = 0\]
\[x_2 + \frac{5}{2}s + \frac{1}{2}t = 0\]

Now writing all the unknowns \((x_1, x_2, x_3, x_4)\) in terms of the dummy variables:

\[x_1 = -\frac{1}{2}s + \frac{7}{2}t\]
\[x_2 = -\frac{5}{2}s - \frac{1}{2}t\]
\[y = s\]
\[z = t\]
So every vector in the nullspace of A can be written as follows:

$$\text{Nullspace}(A) = s \begin{bmatrix} -\frac{1}{2} \\ -\frac{3}{2} \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{7}{2} \\ -\frac{1}{2} \\ 0 \\ 1 \end{bmatrix}$$

Therefore the nullspace of A is

$$\text{span} \left\{ \begin{bmatrix} -\frac{1}{2} \\ -\frac{3}{2} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{7}{2} \\ -\frac{1}{2} \\ 0 \\ 1 \end{bmatrix} \right\}$$

A has a 2-dimensional null space.

iii. In this case, the column space of the row reduced matrix is also \mathbb{R}^2, but this need not be true in general.

iv. No, the columns of A do not form a basis for \mathbb{R}^2.

2. Identifying a Basis

Does each of these sets of vectors describe a basis for \mathbb{R}^3? If the vectors do not form a basis for \mathbb{R}^3, can they be thought of as a basis for some other vector space? If so, write an expression describing this vector space.

$$V_1 = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right\} \quad V_2 = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} \right\} \quad V_3 = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$

Answer:

- V_1: The vectors are linearly independent, but they are not a basis for \mathbb{R}^3, because you cannot construct all vectors in \mathbb{R}^3 using these vectors. Instead, they are a basis for some 2-dimensional subspace of \mathbb{R}^3.

 This subspace can be described by $\text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \right\}$.

- V_2: Yes, the vectors are linearly independent and will form a basis for \mathbb{R}^3. To check that the vectors are linearly independent, you should do Gaussian Elimination of the matrix of the columns: $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$.

 Check that you can get all the way to identity, i.e. the system has a unique solution.

- V_3: No, $\vec{v}_2 + \vec{v}_3 = \vec{v}_1$, so the vectors are linearly dependent. Hence, they cannot form a basis for any vector space of any dimension.
3. Subspaces, Bases, and Dimension

For each of the sets $U_i \subseteq \mathbb{R}^3$ defined below, state whether it is a subspace or not. If it is a subspace, find a basis for it and state the dimension.

(a) $U_1 = \left\{ \begin{bmatrix} 2(x+y) \\ x \\ y \end{bmatrix} \mid x, y \in \mathbb{R} \right\}$

Answer: U_1 is a subspace described by the basis \mathcal{B}_1, where

$\mathcal{B}_1 = \left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \right\}$

The subspace has dimension 2, since there are 2 basis vectors.

(b) $U_2 = \left\{ \begin{bmatrix} x \\ y \\ z+1 \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$

Answer: U_2 is a subspace (in fact \mathbb{R}^3) of dimension 3, and a basis is the natural basis.

(c) $U_3 = \left\{ \begin{bmatrix} x \\ y \\ x+1 \end{bmatrix} \mid x, y \in \mathbb{R} \right\}$

Answer: U_3 is not a subspace since it does not contain the zero vector and is therefore not closed under scalar multiplication.

(d) $U_4 = \left\{ \begin{bmatrix} x \\ y \\ (x+y)^2 \end{bmatrix} \mid x, y \in \mathbb{R} \right\}$

Answer: U_4 is not a subspace, since it is not closed under scalar multiplication or vector addition and thus fails to satisfy the definition of a vector space. As an example, we can see that vector $\vec{v}_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ is in the space, but vector $\vec{v}_2 = 2\vec{v}_1 = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$ is not, so the scalar-multiplication property doesn’t hold; a similar argument can be made for vector addition.